Dinamica del corpo rigido

- Definizione di corpo rigido
- Moto di un corpo rigido
- Densità
- Momento angolare
- Momento d'inerzia

Antonio Pierro

Per consigli, suggerimenti, eventuali errori o altro potete scrivere una email a antonio.pierro[at]gmail.com

Definizione di corpo rigido

- Un corpo rigido è un sistema di punti materiali in cui le distanze tra tutte le possibili coppie di punti non possono variare.
- Quanti parametri occorrono per descrivere il moto di un corpo rigido?

Gradi di libertà di un sistema

- Il numero di parametri necessari per descrive il moto di un sistema si chiama numero di gradi di libertà del sistema.
- Un punto materiale ha tre gradi di libertà (le tre coordinate x, y, z).
- N punti materiali indipendenti hanno 3*N gradi di libertà.

Gradi di libertà di un corpo rigido

 Nel caso di un corpo rigido la condizione che le distanze tra tutte le possibili coppie di punti siano costanti, riduce i gradi di libertà del sistema da 3N (dove N è il numero di particelle) a 6.

$$\forall i, j | i \neq j : (x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2 - d_{ij}^2 = 0$$

- Infatti, definita la "forma" del corpo rigido, a ogni istante la sua posizione è individuabile da sei valori: tre coordinate di un punto, tre coseni direttori di rotazione intorno agli assi x, y, z solidali al corpo.
- I coseni direttori sono proprio i coseni che la direzione della retta forma con gli assi cartesiani.

Moto di un corpo rigido

- Moto di traslazione: tutti i punti si muovono con la stessa velocità \overrightarrow{v} che coicide con $\overrightarrow{v_{cm}}$
 - L'equazione del moto sarà: $\vec{R} = M * \overrightarrow{a_{cm}}$
- ullet Moto di rotazione: tutti i punti descrivono un moto circolare con velocità angolare ω
 - L'equazione del moto sarà: $\vec{M} = \frac{d\vec{L}}{dt}$
- La combinazione dei due moti è definita come moto di rototraslazione.

Corpo continuo

- Supponiamo che il corpo abbia una struttura continua (non consideriamo il livello atomico).
- Consideriamo un elemento di volume infinitesimo dV del corpo e sia dm la massa contenuta in tale volume.
- Si definisce densità del corpo la quantità $\rho = \frac{dm}{dV}$ (dove il volume dV è abbastanza piccolo affinché le proprietà del corpo siano uniformi).
- La massa del corpo sarà:

$$m = \int_{V} \rho dV = \int_{V} \rho(x, y, z) dx dy dz$$

Centro di massa di un corpo continuo

 Se ora vogliamo calcolare la posizione del centro di massa di un corpo continuo, dobbiamo semplicemente dividerlo in parti infinitesime e effettuarne la media pesata. Quindi:

$$\overrightarrow{r_{cm}} = \frac{\int_{V} \overrightarrow{r} * dm}{M} = \frac{\int_{V} \overrightarrow{r} * \rho * dV}{M}$$

Momento d'inerzia per un sistema di n punti materiali

 Sia l'asse z, l'asse di rotazione di un corpo rigido formato da n punti materiali.

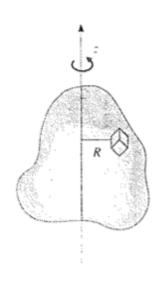
$$\vec{L} = \sum_{n=1}^{n} \vec{L}_i = (\sum_{n=1}^{n} \vec{r}_i \times m_i \vec{v}_i) = (\sum_{n=1}^{n} m_i r_i^2) \vec{\omega} = I_z \vec{\omega}$$

• Il coefficiente I_z si chiama momento d'inerzia del corpo rispetto all'asse z.

$$I_z = \sum_{n=1}^{n} m_i r_i^2 = \sum_{n=1}^{n} m_i (x_i^2 + y_i^2)$$

Momento d'inerzia per un corpo continuo

 Il momento d'inerzia per un corpo continuo si deduce da quello di un sistema rigido formato da n punti materiali:



$$I_z = \sum_{n=1}^{n} m_i R_i^2 \Rightarrow I_z = \int_V R^2 dm = \int_V \rho R^2 dV = \int_V \rho (x^2 + y^2) dV$$

Esempi di corpi con densità di massa lineare

1. Calcolo del momento d'inerzia di un anello di densità lineare

$$\lambda = \frac{m}{2\pi R}:$$

$$I = \int R^2 dm = \int \lambda R^2 dl = \lambda R^2 \int dl = \lambda R^2 2\pi R = mR^2$$

2. Calcolo del momento d'inerzia di una sbarra omogenea di densità lineare $\lambda = \frac{m}{I}$

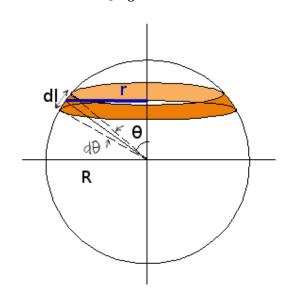
$$I = \int x^2 dm = \int_{-L/2}^{L/2} x^2 \lambda dx = \lambda \left[\frac{x^3}{3}\right]_{-L/2}^{L/2} = \frac{1}{12} mL^2$$

Esempi di corpi con densità di massa superficiale

• Momento d'inerzia di una sfera avente densità superficiale σ :

$$\sigma = \frac{m}{4\pi R^2} \qquad r = R\sin\theta \qquad dl = Rd\theta \qquad \int_0^{\pi} (\sin\theta)^3 d\theta = \frac{4}{3}$$

$$I = \int r^2 dm = \sigma \int_S r^2 dS = \sigma \int_0^{\pi} R^2 \sin\theta^2 2\pi R \sin\theta Rd\theta = \frac{2}{3}MR^2$$



Esempi di corpi con densità di massa volumetrica

1. Momento d'inerzia di un cilindro di densità $\rho = \frac{m}{\pi R^2 h}$:

$$I = \int r^2 dm = \int_0^R r^2 \rho \pi h r dr = \frac{1}{2} mR^2$$

2. Momento d'inerzia di una sfera piena di densità ρ : se si scompone un solido in parti di qualunque forma, il momento d'inerzia totale rispetto a un asse dato è la somma dei momenti d'inerzia delle singole parti rispetto allo stesso asse.

$$I = \int dI = \int_0^M \frac{2}{3} r^2 dm \quad \rho = \frac{m}{\frac{4}{3} \pi R^3} dV = 4\pi r^2 dr$$

$$I = \int dI = \frac{2}{3} \rho \int_0^R r^2 4\pi r^2 dr = \frac{2}{5} MR^2$$

Teorema di Huygens-Steiner

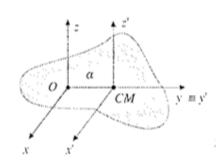
- Nei precedenti esempi, per il calcolo dei momenti d'inerzia, abbiamo scelto particolari assi (passanti per il centro di massa) che ci hanno permesso di semplificare il calcolo.
- Il teorema di Huygens-Steiner stabilisce che il momento d'inerzia di un corpo di massa m rispetto a un asse che si trova a una distanza d dal centro di massa del corpo è dato da

$$I = I_{cm} + md^2$$

• I_{cm} è il momento d'inerzia del corpo rispetto a un asse parallelo al primo e passante per il centro di massa.

Dimostrazione del teorema di Huygens-Steiner

- Per dimostrare il teorema consideriamo due assi z e $z^{'}$, tra loro paralleli, distanti "a" e con asse $z^{'}$ passante per il centro di massa.
- Per un generico punto P_i , il momento d'inerzia rispetto all'asse z sarà:



$$m_i(x_i^2 + y_i^2), \quad x = x', \quad y = y' + a, \quad z = z'$$

• Se sommiamo i momenti d'inerzia di tutti i punti:

$$I = \sum_{i} m_{i}(x_{i}^{2} + y_{i}^{2}) = \sum_{i} (x_{i}^{'2} + (y_{i}^{'} + a)^{2}) \Rightarrow$$

$$I = \sum_{i} (x_{i}^{'2} + y_{i}^{'2}) + \sum_{i} m_{i}a^{2} + 2a \sum_{i} m_{i}y_{i}^{'} = I_{z^{'}} + ma^{2}$$
Sapendo che
$$2a \sum_{i} m_{i}y_{i}^{'} = my_{cm}^{'} = 0$$

Momenti d'inerzia rispetto ad assi passanti per il bordo

Anello di raggio
$$r \Rightarrow I_{cm} = mr^2 \Rightarrow I_{bordo} = 2mr^2$$

Disco di raggio $r \Rightarrow I_{cm} = \frac{1}{2}mr^2 \Rightarrow I_{bordo} = \frac{3}{2}mr^2$
Sfera di raggio $r \Rightarrow I_{cm} = \frac{2}{5}mr^2 \Rightarrow I_{bordo} = \frac{7}{2}mr^2$
Asta lunga d $\Rightarrow I_{cm} = \frac{1}{12}md^2 \Rightarrow I_{bordo} = \frac{1}{3}md^2$