
Chapter 6
Oscillations

Abstract Chapter 6 deals with simple harmonic motion and its application to var-
ious problems, physical pendulums, coupled systems of masses and springs, the
normal coordinates and damped vibrations.

6.1 Basic Concepts and Formulae

Simple Harmonic Motion (SHM)

In SHM the restoring force (F) is proportional to the displacement but is oppositely
directed.

F = −kx (6.1)

where k is a constant, known as force constant or spring constant. The negative sign
in (6.1) implies that the force is opposite to the displacement.

When the mass is released, the force produces acceleration a given by

a = F/m = −k/m = −ω2x (6.2)

where ω2 = k/m (6.3)

and ω = 2π f (6.4)

is the angular frequency.
Differential equation for SHM:

d2x
dt2 + ω2x = 0 (6.5)

Most general solution for (6.5) is

x = A sin(ωt + ε) (6.6)
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236 6 Oscillations

where A is the amplitude, (ωt + ε) is called the phase and ε is called the phase
difference.

The velocity v is given by

v = ±ω
√

A2 − x2 (6.7)

The acceleration is given by

a = −ω2x (6.8)

The frequency of oscillation is given by

f = ω

2π
= 1

2π

√
k
m

(6.9)

where m is the mass of the particle.
The time period is given by

T = 1
f

= 2π

√
m
k

(6.10)

Total energy (E) of the oscillator:

E = 1/2 m A2ω2 (6.11)

Kav = Uav = 1/4 m A2ω2 (6.12)

Loaded spring:

T = 2π

√√√√
(

M + m
3

)

k
(6.13)

where M is the load and m is the mass of the spring.
If v1 and v2 are the velocities of a particle at x1 and x2, respectively, then

T = 2π

√
x2

2 − x2
1

v2
1 − v2

2

(6.14)

A =
√

v2
1 x2

2 − v2
2 x2

1

v2
1 − v2

2

(6.15)
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Pendulums

Simple Pendulum (Small Amplitudes)

T = 2π

√
L
g

(6.16)

T is independent of the mass of the bob. It is also independent of the amplitude
for small amplitudes.

Seconds pendulum is a simple pendulum whose time period is 2 s.

Simple Pendulum (Large Amplitude)

For large amplitude θ0, the time period of a simple pendulum is given by

T = 2π

√
L
g

[

1 +
(

1
2

)2

sin2
(

θ0

2

)
+
(

1.3
2.4

)2

sin4
(

θ0

2

)
+
(

1.3.5
2.4.6

)2

sin6
(

θ0

2

)]

(6.17)

where we have dropped higher order terms.
Simple pendulum on an elevator/trolley moving with acceleration a. Time period

of the stationary pendulum is T and that of moving pendulum T ′.

(a) Elevator has upward acceleration a

T ′ = T
√

g
g + a

(6.18)

(b) Elevator has downward acceleration a

T ′ = T
√

g
g − a

(6.19)

(c) Elevator has constant velocity, i.e. a = 0

T ′ = T (6.20)

(d) Elevator falls freely or is kept in a satellite, a = g

T ′ = ∞ (6.21)

The bob does not oscillate at all but assumes a fixed position.
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(a) Trolley moving horizontally with acceleration a

T ′ = T

√
g

√
g2 + a2

(6.22)

(b) Trolley rolls down on a frictionless incline at an angle θ to the horizontal plane

T ′ = T/ cos θ (6.23)

Physical Pendulum

Any rigid body mounted such that it can swing in a vertical plane about some axis
passing through it is called a physical pendulum, Fig. 6.1.

Fig. 6.1

The body is pivoted to a horizontal frictionless axis through P and displaced from
the equilibrium position by an angle θ . In the equilibrium position the centre of mass
C lies vertically below the pivot P. If the distance from the pivot to the centre of mass
be d, the mass of the body M and the moment of inertia of the body about an axis
through the pivot I , the time period of oscillations is given by

T = 2π

√
1

Mgd
(6.24)

The equivalent length of simple pendulum is

Leq = I/Md (6.25)

The torsional oscillator consists of a flat metal disc suspended by a wire from a
clamp and attached to the centre of the disc. When displaced through a small angle
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about the vertical wire and released the oscillator would execute oscillations in the
horizontal plane. For small twists the restoring torque will be proportional to the
angular displacement

τ = −Cθ (6.26)

where C is known as torsional constant. The time period of oscillations is given by

T = 2π

√
l
C

(6.27)

Coupled Harmonic Oscillators

Two equal masses connected by a spring and two other identical springs fixed to
rigid supports on either side, Fig. 6.2, permit the masses to jointly undergo SHM
along a straight line, so that the system corresponds to two coupled oscillators. The
equation of motion for mass m1 is

mẍ1 + k(2x1 − x2) = 0 (6.28)

Fig. 6.2

and that for m2 is

mẍ2 + k(2x2 − x1) = 0 (6.29)

Equations (6.28) and (6.29) are coupled equations.
Assuming x1 = A1 sin ωt and x2 = A2 sin ωt
(6.28) and (6.29) become

ẍ1 = −ω2 A1 sin ωt = −ω2x1 (6.30)

ẍ2 = −ω2 A2 sin ωt = −ω2x2 (6.31)

Inserting (6.30) and (6.31) in (6.28) and (6.29), we get on rearrangement

(2k − mω2)x1 − kx2 = 0 (6.32)

− kx1 + (2k − mω2)x2 = 0 (6.33)
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For a non-trivial solution, the determinant formed from the coefficients of x1 and x2
must vanish.

∣∣∣∣
2k − mω2 −k

−k 2k − mω2

∣∣∣∣ = 0

The expansion of the determinant gives a quadratic equation in ω whose solutions
are

ω1 =
√

k/m (6.35)

ω2 =
√

3k/m (6.36)

Normal coordinates: It is always possible to define a new set of coordinates called
normal coordinates which have a simple time dependence and correspond to the
excitation of various oscillation modes of the system. Consider a pair of coordinates
defined by

η1 = x1 − x2, η2 = x1 + x2 (6.37)

or x1 = 1
2
(η1 + η2), x2 = 1

2
(η2 − η1) (6.38)

Substituting (6.38) in (6.28) and (6.29) we get

m(η̈1 + η̈2) + k(3η1 + η2) = 0

m(η̈1 − η̈2) + k(3η1 − η2) = 0

which can be solved to yield

mη̈1 + 3kη1 = 0

mη̈2 + kη2 = 0 (6.39)

The coordinates η1 and η2 are now uncoupled and are therefore independent
unlike the old coordinates x1 and x2 which were coupled.

The solutions of (6.39) are

η1(t) = B1 sin ω1t, η2(t) = B2 sin ω2t (6.40)

where the frequencies are given by (6.35) and (6.36).
A deeper insight is obtained from the energies expressed in normal coordinates

as opposed to the old coordinates. The potential energy of the system

U = 1
2

kx1
2 + 1

2
k(x2 − x1)

2 + 1
2

kx2
2

= k(x1
2 − x1x2 + x2

2) (6.41)
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The term proportional to the cross-product x1x2 is the one which expresses the cou-
pling of the system. The kinetic energy of the system is

K = 1/2 mẋ2
1 + 1/2 mẋ2

2 (6.42)

In terms of normal coordinates defined by (6.38)

U = k
4
(η2

1 + 3η2
2) (6.43)

K = m
4

(η̇2
1 + η̇2

2) (6.44)

Thus, the cross-product term has disappeared and the kinetic and potential energies
appear in quadratic form. Each normal coordinate corresponds to an independent
mode of vibration of the system, with its own characteristic frequency and the gen-
eral vibratory motion may be regarded as the superposition of some or all of the
independent normal vibrations.

Damped Vibrations

For small velocities the resisting force fr (friction) is proportional to the velocity:

fr = −r
dx
dt

(6.45)

where r is known as the resistance constant or damping constant. The presence of
the dissipative forces results in the loss of energy in heat motion leading to a gradual
decrease of amplitude. The equation of motion is written as

m
d2x
dt2 + r

dx
dt

+ kx = 0 (6.46)

where m is the mass of the body and k is the spring constant.
Putting r/m = 2b and k/m = ω0

2, (6.46) becomes on dividing by m

d2x
dt2 + 2b

dx
dt

+ ω2
0x = 0 (6.47)

Let x = eλt so that dx/dt = λeλt and d2x/dt2 = λ2eλt

The corresponding characteristic equation is

λ2 + 2bλ + ω0
2 = 0 (6.48)

The roots are

λ = −b ±
√

b2 − ω2
0 (6.49)
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Calling R =
√

b2 − ω2
0

λ1 = −b + R λ2 = −b − R

Using the boundary conditions, at t = 0, x = x0 and dx/dt = 0 the solution to
(6.47) is found to be

x = 1
2

x0e−bt
[
(1 + b/R)eRt + (1 − b/R)e−Rt

]
(6.50)

The physical solution depends on the degree of damping.
Case 1: Small frictional forces: b < ω0 (underdamping)
b2 < k/m or (r/2m)2 < k/m

R is imaginary. R = jω′, where j =
√

−1

ω′2 = ω2
0 − b2 (6.51)

x = Ae−bt cos(ω′t + ε) (6.52)

where A = ω0x0/ω
′ and ε = tan−1(−b/ω′) (6.53)

Fig. 6.3 Underdamped
motion

Equation (6.52) represents damped harmonic motion of period

T ′ = 2π

ω′ = 2π
√

ω2
0 − b2

(6.54)

T = 1/b is the time in which the amplitude is reduced to 1/e.
The logarithmic decrement ( is

( = ln
(

A′

Ae−bT ′

)
= bT ′ (6.55)

Case 2: Large frictional forces (overdamping)
b > ω0. Distinct real roots.
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Both the exponential terms in (6.50) are negative and they correspond to expo-
nential decrease. The motion is not oscillatory. The general solution is of the form

x = e−bt (AeRt + Be−Rt ) (6.56)

Fig. 6.4 Overdamped motion

Case 3: Critical damping

b = ω, R = 0

Fig. 6.5 Criticallydamped
motion

The exponentials in the square bracket may be expanded to terms linear in Rt. The
solution is of the form

x = x0 e−bt (1 + bt) (6.57)

The motion is not oscillatory and is said to be critically damped. It is a transition
case and the motion is just aperiodic or non-oscillatory. There is an initial rise in
the displacement due to the factor (1 + bt) but subsequently the exponential term
dominates.

Energy and Amplitude of a Damped Oscillator

E(t) = E0e−t/tc (6.58)
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where tc = m/r

A(t) = A0e−t/2tc (6.59)

Quality factor

Q = ωtc = ωm/r (6.60)

ω′ = ω0

√

1 − 1
4Q2 (6.61)

The value of quality factor indicates the sharpness of resonance.

Q = ω0

ω2 − ω1
(6.62)

where ω0 is the resonance angular frequency and ω2 and ω1 are, respectively, the
two angular frequencies above and below resonance at which the average power has
dropped to one-half its resonance value. (Fig. 6.6).

Fig. 6.6 Resonance
frequency curve, ω0 is the
resonance angular frequency.
ω1 and ω2 are defined in the
text

Forced vibrations are set up by a periodic force F cos ωt .
Equation of motion of a particle of mass m

md2x
dt2 + rdx

dt
+ kx = F cos ωt (6.63)

or

d2x
dt2 + 2b

dx
dt

+ ω2
0x = p cos ωt (6.64)

where

k/m = ω2
0, r/m = 2b and F/m = p (6.65)
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ω0 being the resonance frequency.

x = A cos(ωt − ε) (6.66)

tan ε = 2bω

ω2
0 − ω2

(6.67)

Mechanical impedance

Zm =
√

(ω2
0 − ω2)2 + 4b2ω2 (6.68)

A = p
Zm

(6.69)

Q = ω0

2b
(6.70)

Power

W = F2 − sin ε

2Zm
(6.71)

6.2 Problems

6.2.1 Simple Harmonic Motion (SHM)

6.1 The total energy of a particle executing SHM of period 2π s is 0.256 J. The
displacement of the particle at π/4 s is 8

√
2 cm. Calculate the amplitude of

motion and mass of the particle.

6.2 A particle makes SHM along a straight line and its velocity when passing
through points 3 and 4 cm from the centre of its path is 16 and 12 cm/s, respec-
tively. Find (a) the amplitude; (b) the time period of motion.

[Northern Universities of UK]

6.3 A small bob of mass 50 g oscillates as a simple pendulum, with amplitude 5 cm
and period 2 s. Find the velocity of the bob and the tension in the supporting
thread when velocity of the bob is maximum.

[University of Aberystwyth, Wales]
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6.4 A particle performs SHM with a period of 16 s. At time t = 2 s, the particle
passes through the origin while at t = 4 s, its velocity is 4 m/s. Show that the
amplitude of the motion is 32

√
2/π .

[University of Dublin]

6.5 Show that given a small vertical displacement from its equilibrium position
a floating body subsequently performs simple harmonic motion of period
2π

√
V/Ag where V is the volume of displaced liquid and A is the area of

the plane of floatation. Ignore the viscous forces.

6.6 Imagine a tunnel bored along the diameter of the earth assumed to have constant
density. A box is thrown into the tunnel (chute). (a) Show that the box executes
SHM inside the tunnel about the centre of the earth. (b) Find the time period of
oscillations.

6.7 A particle which executes SHM along a straight line has its motion represented
by x = 4 sin(π t/3 + π/6). Find (a) the amplitude; (b) time period; (c) fre-
quency; (d) phase difference; (e) velocity; (f) acceleration, at t = 1 s, x being
in cm.

6.8 (a) At what distance from the equilibrium position is the kinetic energy equal
to the potential energy for a SHM?

(b) In SHM if the displacement is one-half of the amplitude show that the
kinetic energy and potential energy are in the ratio 3:1.

6.9 A mass M attached to a spring oscillates with a period 2 s. If the mass is
increased by 2 kg, the period increases by 1 s. Assuming that Hooke’s law is
obeyed, find the initial mass M .

6.10 A particle vibrates with SHM along a straight line, its greatest acceleration is
5π2 cm/s2, and when its distance from the equilibrium is 4 cm the velocity of
the particle is 3π cm/s. Find the amplitude and the period of oscillation of the
particle.

6.11 If the maximum acceleration of a SHM is α and the maximum velocity is
β, show that the amplitude of vibration is given by β2/α and the period of
oscillation by 2πβ/α.

6.12 If the tension along the string of a simple pendulum at the lowest position is
1% higher than the weight of the bob, show that the angular amplitude of the
pendulum is 0.1 rad.

6.13 A particle executes SHM and is located at x = a, b and c at time t0, 2t0 and

3t0, respectively. Show that the frequency of oscillation is
1

2π t0
cos−1 a + c

2b
.

6.14 A 4 kg mass at the end of a spring moves with SHM on a horizontal frictionless
table with period 2 s and amplitude 2 m. Determine (a) the spring constant;
(b) maximum force exerted on the spring.
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6.15 A particle moves in the xy-plane according to the equations x = a sin ωt ;
y = b cos ωt . Determine the path of the particle.

6.16 (a) Prove that the force F = −kxí acting in a SHO is conservative. (b) Find
the potential energy of an SHO.

6.17 A 2 kg weight placed on a vertical spring stretches it 5 cm. The weight is
pulled down a distance of 10 cm and released. Find (a) the spring constant;
(b) the amplitude; (c) the frequency of oscillations.

6.18 A mass m is dropped from a height h on to a scale-pan of negligible weight,
suspended from a spring of spring constant k. The collision may be considered
to be completely inelastic in that the mass sticks to the pan and the pan begins
to oscillate. Find the amplitude of the pan’s oscillations.

6.19 A particle executes SHM along the x-axis according to the law x = A sin ωt .
Find the probability dp(x) of finding the particle between x and x + dx .

6.20 Using the probability density distribution for the SHO, calculate the mean
potential energy and the mean kinetic energy over an oscillation.

6.21 A cylinder of mass m is allowed to roll on a smooth horizontal table with a
spring of spring constant k attached to it so that it executes SHM about the
equilibrium position. Find the time period of oscillations.

6.22 Two simple pendulums of length 60 and 63 cm, respectively, hang vertically
one in front of the other. If they are set in motion simultaneously, find the time
taken for one to gain a complete oscillation on the other.

[Northern Universities of UK]

6.23 A pendulum that beats seconds and gives correct time on ground at a certain
place is moved to the top of a tower 320 m high. How much time will the
pendulum lose in 1 day? Assume earth’s radius to be 6400 km.

6.24 Taking the earth’s radius as 6400 km and assuming that the value of g inside
the earth is proportional to the distance from the earth’s centre, at what depth
below the earth’s surface would a pendulum which beats seconds at the earth’s
surface lose 5 min in a day?

[University of London]

6.25 A U-tube is filled with a liquid, the total length of the liquid column being
h. If the liquid on one side is slightly depressed by blowing gently down, the
levels of the liquid will oscillate about the equilibrium position before finally
coming to rest. (a) Show that the oscillations are SHM. (b) Find the period of
oscillations.

6.26 A gas of mass m is enclosed in a cylinder of cross-section A by means of a
frictionless piston. The gas occupies a length l in the equilibrium position and
is at pressure P . (a) If the piston is slightly depressed, show that it will execute
SHM. (b) Find the period of oscillations (assume isothermal conditions).
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6.27 A SHM is given by y = 8 sin
(

2π t
τ

+ ϕ

)
, the time period being 24 s. At

t = 0, the displacement is 4 cm. Find the displacement at t = 6 s.

6.28 In a vertical spring-mass system, the period of oscillation is 0.89 s when the
mass is 1.5 kg and the period becomes 1.13 s when a mass of 1.0 kg is added.
Calculate the mass of the spring.

6.29 Consider two springs A and B with spring constants kA and kB, respectively,
A being stiffer than B, that is, kA > kB. Show that

(a) when two springs are stretched by the same amount, more work will be
done on the stiffer spring.

(b) when two springs are stretched by the same force, less work will be done
on the stiffer spring.

6.30 A solid uniform cylinder of radius r rolls without sliding along the inside
surface of a hollow cylinder of radius R, performing small oscillations. Deter-
mine the time period.

6.2.2 Physical Pendulums

6.31 Consider the rigid plane object of weight Mg shown in Fig. 6.7, pivoted about
a point at a distance D from its centre of mass and displaced from equilibrium
by a small angle ϕ. Such a system is called a physical pendulum. Show that
the oscillatory motion of the object is simple harmonic with a period given by

T = 2π

√
I

MgD
where I is the moment of inertia about the pivot point.

Fig. 6.7

6.32 A thin, uniform rod of mass M and length L swings from one of its ends
as a physical pendulum (see Fig. 6.8). Given that the moment of inertia of a
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Fig. 6.8

uniform rod about one end is I = 1
3

M L2, obtain an equation for the period

of the oscillatory motion for small angles. What would be the length l of a
simple pendulum that has the same period as the swinging rod?

6.33 The physical pendulum has two possible pivot points A and B, distance L
apart, such that the period of oscillations is the same (Fig. 6.9). Show that
the acceleration due to gravity at the pendulum’s location is given by g =
4π2L/T 2.

Fig. 6.9

6.34 A semi-circular homogeneous disc of radius R and mass m is pivoted freely
about the centre. If slightly tilted through a small angle and released, find the
angular frequency of oscillations.

6.35 A ring is suspended on a nail. It can oscillate in its plane with time period T1
or it can oscillate back and forth in a direction perpendicular to the plane of
the ring with time period T2. Find the ratio T1/T2.

6.36 A torsional oscillator consists of a flat metal disc suspended by a wire. For
small angular displacements show that time period is given by

T = 2π

√
I
C
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where I is the moment of inertia about its axis and C is known as torsional
constant given by τ = −Cθ , where τ is the torque.

6.37 In the arrangement shown in Fig. 6.10, the radius of the pulley is r , its moment
of inertia about the rotation axis is I and k is the spring constant. Assuming
that the mass of the thread and the spring is negligible and that the thread does
not slide over the frictionless pulley, calculate the angular frequency of small
oscillations.

Fig. 6.10

6.38 Two unstretched springs with spring constants k1 and k2 are attached to a solid
cylinder of mass m as in Fig. 6.11. When the cylinder is slightly displaced
and released it will perform small oscillations about the equilibrium position.
Assuming that the cylinder rolls without sliding, find the time period.

Fig. 6.11

6.39 A particle of mass m is located in a one-dimensional potential field U (x) =
a
x2 − b

x
where a and b are positive constants. Show that the period of small

oscillations that the particle performs about the equilibrium position will be

T = 4π

√
2a3m

b4

[Osmania University 1999]
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6.2.3 Coupled Systems of Masses and Springs

6.40 Two springs of constants k1 and k2 are connected in series, Fig. 6.12. Calculate
the effective spring constant.

Fig. 6.12

6.41 A mass m is connected to two springs of constants k1 and k2 in parallel,
Fig. 6.13. Calculate the effective (equivalent) spring constant.

Fig. 6.13

6.42 A mass m is placed on a frictionless horizontal table and is connected to fixed
points A and B by two springs of negligible mass and of equal natural length
with spring constants k1 and k2, Fig. 6.14. The mass is displaced along x-axis
and released. Calculate the period of oscillation.

Fig. 6.14

6.43 One end of a long metallic wire of length L is tied to the ceiling. The other end
is tied to a massless spring of spring constant k. A mass m hangs freely from
the free end of the spring. The area of cross-section and the Young’s modulus
of the wire are A and Y respectively. The mass is displaced down and released.

Show that it will oscillate with time period T = 2π

√
m(Y A + kL)

Y Ak
.

[Adapted from Indian Institute of Technology 1993]
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6.44 The mass m is attached to one end of a weightless stiff rod which is rigidly
connected to the centre of a uniform cylinder of radius R, Fig. 6.15. Assum-
ing that the cylinder rolls without slipping, calculate the natural frequency of
oscillation of the system.

Fig. 6.15

6.45 Find the natural frequency of a semi-circular disc of mass m and radius r
which rolls from side to side without slipping.

6.46 Determine the eigenfrequencies and describe the normal mode motion for two
pendula of equal lengths b and equal masses m connected by a spring of force
constant k as shown in Fig. 6.16. The spring is unstretched in the equilibrium
position.

Fig. 6.16

6.47 In prob. (6.46) express the equations of motion and the energy in terms of
normal coordinates. What are the characteristics of normal coordinates?

6.48 The superposition of two harmonic oscillations in the same direction leads to
the resultant displacement y = A cos 6π t sin 90π , where t is expressed in sec-
onds. Find the frequency of the component vibrations and the beat frequency.

6.49 Find the fundamental frequency of vibration of the HCl molecule. The masses
of H and Cl may be assumed to be 1.0 and 36.46 amu.
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1 amu = 1.66 × 10−27 kg and k = 480 N/m

6.50 Find the resultant of the vibrations y1 = cos ωt , y2 = 1/2 cos(ωt + π/2) and

y3 = 1
3

cos(ωt + π), acting in the same straight line.

6.2.4 Damped Vibrations

6.51 A mass attached to a spring vibrates with a natural frequency of 20 c/s
while its frequency for damped vibrations is 16 c/s. Determine the logarithmic
decrement.

6.52 The equation of motion for a damped oscillator is given by

4d2x/dt2 + rdx/dt + 32x = 0

For what range of values for the damping constant will the motion be (a)
underdamped; (b) overdamped; (c) critically damped?

6.53 A mass of 4 kg attached to the lower end of a vertical spring of constant
20 N/m oscillates with a period of 10 s. Find (a) the natural period; (b) the
damping constant; (c) the logarithmic decrement.

6.54 Solve the equation of motion for the damped oscillator d2x/dt2 + 2dx/dt +
5x = 0, subject to the condition x = 5, dx/dt = −3 at t = 0.

6.55 A 1 kg weight attached to a vertical spring stretches it 0.2 m. The weight is
then pulled down 1.5 m and released. (a) Is the motion underdamped, over-
damped or critically damped? (b) Find the position of the weight at any time
if a damping force numerically equal to 14 times the instantaneous speed is
acting.

6.56 A periodic force acts on a 6 kg mass suspended from the lower end of a vertical
spring of constant 150 N/m. The damping force is proportional to the instan-
taneous speed of the mass and is 80 N when v = 2 m/s. find the resonance
frequency.

6.57 The equation of motion for forced oscillations is 2 d2x/dt2 + 1.5dx/dt +
40x = 12 cos 4t . Find (a) amplitude; (b) phase lag; (c) Q factor; (d) power
dissipation.

6.58 An electric bell has a frequency 100 Hz. If its time constant is 2 s, determine
the Q factor for the bell.

6.59 An oscillator has a time period of 3 s. Its amplitude decreases by 5% each
cycle (a) By how much does its energy decrease in each cycle? (b) Find the
time constant (c) Find the Q factor.
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6.60 A damped oscillator loses 3% of its energy in each cycle. (a) How many cycles
elapse before half its original energy is dissipated? (b) What is the Q factor?

6.61 A damped oscillator has frequency which is 9/10 of its natural frequency. By
what factor is its amplitude decreased in each cycle?

6.62 Show that for small damping ω′ ≈ (1 − r2/8mk)ω0 where ω0 is the natural
angular frequency, ω′ the damped angular frequency, r the resistance constant,
k the spring constant and m the particle mass.

6.63 Show that the time elapsed between successive maximum displacements of a
damped harmonic oscillator is constant and equal to 4πm/

√
4km − r2, where

m is the mass of the vibrating body, k is the spring constant, 2b = r/m, r
being the resistance constant.

6.64 A dead weight attached to a light spring extends it by 9.8 cm. It is then slightly
pulled down and released. Assuming that the logarithmic decrement is equal
to 3.1, find the period of oscillation.

6.65 The position of a particle moving along x-axis is determined by the equation
d2x/dt2 + 2dx/dt + 8x = 16 cos 2t .

(a) What is the natural frequency of the vibrator?
(b) What is the frequency of the driving force?

6.66 Show that the time t1/2 for the energy to decrease to half its initial value is
related to the time constant by t1/2 = tc ln 2.

6.67 The amplitude of a swing drops by a factor 1/e in 8 periods when no energy
is pumped into the swing. Find the Q factor.

6.3 Solutions

6.3.1 Simple Harmonic Motion (SHM)

6.1 x = A sin ωt (SHM)

ω = 2π

T
= 2π

2π
= 1 rad/s

8
√

2 = A sin
(

1 · π

4

)

A = 16 cm = 0.16 m

E = 1
2

m A2ω2

∴ m = 2E
A2ω2 = 2 × 0.256

(0.16)2 × 12 = 20.0 kg
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6.2 (a) v = ω
√

A2 − x2 (1)

16 = ω
√

A2 − 32 (2)

12 = ω
√

A2 − 42 (3)

Solving (2) and (3) A = 5 cm and ω = 4 rad/s

(b) Therefore T = 2π

ω
= 2π

4
= 1.57 s

6.3 x = A sin ωt

v = dx
dt

= ωA cos ωt

vmax = Aω = 2π A
T

= 2π × 5
2

= 5π cm/s

At the equilibrium position the weight of the bob and the tension act in the
same direction

Tension = mg + mv2
max

L

Now the length of the simple pendulum is calculated from its period T .

L = gT 2

4π2 = 980 × 22

4π2 = 99.29 cm

Tension = m
(

1 + v2
max

gL

)
g = 50

(
1 + 25π2

980 × 99.29

)
g

= 50.13 g dynes = 50.13 g wt

6.4 The general equation of SHM is

x = A sin(ωt + ε)

ω = 2π

T
= 2π

16
= π

8

When t = 2 s, x = 0.

0 = A sin
(π

8
× 2 + ε

)

Since A '= 0, sin
(π

4
+ ε

)
= 0
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∴ π

4
+ ε = 0 ε = −π

4

Now v = dx
dt

= Aω cos(ωt + ε)

When t = 4, v = 4.

∴ 4 = Aπ

8
cos

(π

8
4 − π

4

)

∴ A = 32
√

2
π

6.5 Let the body with uniform cross-section A be immersed to a depth h in a liq-
uid of density D. Volume of the liquid displaced is V = Ah. Weight of the
liquid displaced is equal to VDg or AhDg. According to Archimedes princi-
ple, the weight of the liquid displaced is equal to the weight of the floating
body Mg.

Mg = Ahdg or M = Ah D

The body occupies a certain equilibrium position. Let the body be further
depressed by a small amount x . The body now experiences an additional
upward thrust in the direction of the equilibrium position. When the body is
released it moves up with acceleration

a = − Ax Dg
M

= − Ax Dg
Ah D

= −gx
h

= −ω2x

with ω2 = g
h

Time period T = 2π

ω
= 2π

√
h
g

= 2π

√
V
Ag

6.6 The acceleration due to gravity g at a depth d from the surface is given by

g = g0

(
1 − d

R

)
(1)

where g0 is the value of g at the surface of the earth of radius R.

Writing x = R − d (2)
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Equation (1) becomes g = g0
x
R

(3)

where x measures the distance from the centre. The acceleration g points oppo-
site to the displacement x . We can therefore write

a = g = −g0x
R

= −ω2x (4)

with ω2 = g0

R

Equation (4) shows that the box performs SHM. The period is calculated from

T = 2π

ω
= 2π

√
R
g0

= 2π

√
6.4 × 106

9.8
= 5074 s or 84.6 min

6.7 Standard equation for SHM is

x = A sin(ωt + ε)

x = 4 sin
(

π t
3

+ π

6

)

(a) A = 4 cm

(b) ω = π

3
. Therefore T = 2π

ω
= 6 s

(c) f = 1
T

= 1
6
/ s

(d) ε = π

6

(e) v = dx
dt

= 4π

3
cos

(
π t
3

+ π

6

)
= 4π

3
cos

(π

3
× 1 + π

6

)
= 0

(f) a = dv

dt
= −4π2

9
sin
(π

3
× 1 + π

6

)
= −4π2

9

6.8 (a) K = 1
2

mω2(A2 − x2) U = 1
2

mω2x2 K = U

∴ 1
2

mω2(A2 − x2) = 1
2

mω2x2

∴ x = A√
2

(b) K = 1
2

mω2
(

A2 − A2

4

)
= 1

2
mω2 3

4
A2
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U = 1
2

mω2 A2

4
∴ K : U = 3 : 1

6.9 T = 2π

√
M
k

(1)

2 = 2π

√
M
k

(2)

3 = 2π

√
M + 2

k
(3)

Dividing (2) by (3) and solving for M, we get M = 1.6 kg.

6.10 amax = ω2 A

5π2 = ω2 A (1)

v = ω
√

A2 − x2

3π = ω
√

A2 − 16 (2)

Solving (1) and (2), we get A = 5 cm and T = 2π

ω
= 2π

π
= 2 s.

6.11 α = ω2 A (1)

β = ωA (2)

∴ β2 = ω2 A2 = αA

or A = β2

α

Dividing (2) by (1)

β

α
= 1

ω

or T = 2π

ω
= 2πβ

α

6.12 By problem
mg + mv2/L

mg
= 1.01

∴ v2

gL
= 0.01

Conservation of energy gives

1
2

mv2 = mgh = mgL(1 − cos θ) ( mgL
θ2

2
for small θ
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θ2 = v2

gL
= 0.01

∴ θ =
√

0.01 = 0.1 rad

6.13 a = A sin ωt0
b = A sin 2ωt0
c = A sin 3ωt0
a + c = 2A sin 2ωt0 cos ωt0
a + c

2b
= cos ωt0

ω = 1
t0

cos−1
(

a + c
2b

)

f = 1
2π t0

cos−1
(

a + c
2b

)

6.14 (a) ω =
√

k
m

k = mω2 = 4π2m
T 2 = 4π2 × 4

22 = 39.478 N/m

(b) Fmax = mω2 A = k A = 39.478 × 2 = 78.96 N

6.15 x = a sin ωt

y = b cos ωt

∴ x2

a2 + y2

b2 = sin2 ωt + cos2 ωt = 1

Thus the path of the particle is an ellipse.

6.16 (a) To show that ∇ × F = 0.

∇ × F =

∣∣∣∣∣∣∣∣

i j k
∂

∂x
∂

∂y
∂

∂z
−K x 0 0

∣∣∣∣∣∣∣∣
= 0

(b) U = −
∫

Fdx = −
∫

(K ix) (−î dx) = 1
2

K x2
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6.17 (a) F = kx

∴ k = F
x

= 2 × 9.8
5 × 10−2 = 392 N/m

(b) 10 cm

(c) f = 1
2π

√
k
m

= 1
2π

√
392

2 × 9.8
= 0.712/ s

6.18 Let x0 be the extension of the spring. Deformation energy = gravitational
potential energy

1
2

kx2
0 = mgh + mgx0

Rearranging

x2
0 − 2mg

k
x0 − mgh = 0

The quadratic equation has the solutions

x01 = mg
k

+
√

m2g2

k2 + 2mgh
k

x02 = mg
k

−
√

m2g2

k2 + 2mgh
k

The equilibrium position is depressed by x0 = mg
k

below the initial position.

The amplitude of the oscillations as measured from the equilibrium position

is equal to

√
m2g2

k2 + 2mgh
k

.

6.19 It is reasonable to assume that the probability density
dp(x)

dx
for finding the

particle is proportional to the time spent at a given point and is therefore
inversely proportional to its speed v.

dp(x)

dx
= C

v
(1)

where C = constant of proportionality.

But v = ω
√

A2 − x2 (2)
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The probability density

dp(x)

dx
= C

ω
√

A2 − x2
(3)

C can be found by normalization of distribution

A∫

−A

dp(x) = C
ω

A∫

−A

dx√
A2 − x2

= 1

or
Cπ

ω
= 1 → C

ω
= 1

π

∴ dp(x)

dx
= 1

π
√

A2 − x2

6.20 U = 1
2

kx2

Using the result of prob. (6.19)

〈U 〉 =
∫

Udp(x) =
A∫

−A

1
2

kx2 dx

π
√

A2 − x2

Put x = A sin θ, dx = A cos θ dθ

〈U 〉 =
(

k A2

2π

) π/2∫

−π/2

sin2 θ dθ = 1
4

k A2

Also, 〈K 〉 = 〈E − U 〉 = 1
2

k A2 − 1
4

k A2 = 1
4

k A2

6.21 Ktrans + Krot + U = constant

1
2

mv2 + 1
2

Iω2 + 1
2

kx2 = constant

But I = 1
2

m R2 and ω = v

R

∴ 3
4

m
(

dx
dt

)2

+ 1
2

kx2 = 0 constant

Differentiating

3
2

m
d2x
dt2

dx
dt

+ kx
dx
dt

= 0
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Cancelling dx/dt throughout and simplifying

d2x
dt2 +

(
2k
3m

)
x = 0

This is the equation for SHM

with ω2 =
(

2k
3m

)

T = 2π

ω
= 2π

√
3m
2k

6.22 The time period of the pendulums is

T1 = 2π

√
60
g

(1)

T2 = 2π

√
63
g

(2)

Let the time be t in which the longer length pendulum makes n oscillations
while the shorter one makes (n + 1) oscillations. Then

t = (n + 1)T1 = nT2 (3)

Using (1) and (2) in (3), we find n = 40.5 and t = 64.49 s.

6.23 Let g0 be the acceleration due to gravity on the ground and g at height above
the ground. Then

g = g0 R2

(R + h)2

At the ground, T0 = 2π

√
L
g0

. At height h, T = 2π

√
L
g

T = T0

√
g0

g
= T0

(
1 + h

R

)
= 2

(
1 + 320

6.4 × 106

)
= 2.0001 s

Time lost in one oscillation on the top of the tower = 2.0001 − 2.0000 =
0.0001 s. Number of oscillations in a day for the pendulum which beats
seconds on the ground

= 86400
2.0

= 43,200
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Therefore, time lost in 43,200 oscillations

= 42,300 × 0.0001 = 4.32 s

6.24 g = g0

(
1 − d

R

)
(1)

where g and g0 are the acceleration due to gravity at depth d and surface,
respectively, and R is the radius of the earth.

T = T0

√
g0

g
= T0

(
1 − d

R

)−1/2

= T0

(
1 + d

2R

)

Time registered for the whole day will be proportional to the time period. Thus

T
T0

= t
t0

= 1 + d
2R

86,400
86,400 − 300

= 1 + d
2R

Substituting R = 6400 km, we find d = 44.6 km.

6.25 (a) Let the liquid level in the left limb be depressed by x , so that it is elevated
by the same height in the right limb (Fig. 6.17). If ρ is the density of the
liquid, A the cross-section of the tube, M the total mass, and m the mass
of liquid corresponding to the length 2x , which provides the unbalanced
force,

Md2x
dt2 = −mg = −(2x Aρ)g

d2x
dt2 = −2Aρg

M
x = −2Aρgx

h Aρ
= −2gx

h
= −ω2x

This is the equation of SHM.

Fig. 6.17
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(b) The time period is given by

T = 2π

ω
= 2π

√
h

2g

6.26 (a) Let the gas at pressure P and volume V be compressed by a small length
x , the new pressure being p′ and new volume V ′ (Fig. 6.18) under isother-
mal conditions.

P ′V ′ = PV

or P ′(l − x)A = Pl A

where A is the cross-sectional area.

P ′ = Pl
l − x

− P
(

1 − x
l

)−1
( P

(
1 + x

l

)

where we have expanded binomially up to two terms since x << l. The
change in pressure is

(P = P ′ − P = Px
h

The unbalanced force

F = −(P A = − APx
l

and the acceleration

a = F
m

= − APx
ml

= −ω2x

which is the equation for SHM.

Fig. 6.18
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(b) The time period

T = 2π

ω
= 2π

√
ml
AP

6.27 y = 8 sin
(

2π t
T

+ φ

)

At t = 0; 4 = 8 sin φ

∴ φ = 30◦ = π

6

y = 8 sin
(

2π × 6
24

+ π

6

)
= 8 sin 120 = 4

√
3 cm

6.28 Time period of a loaded spring

T = 2π

√√√√M + m
3

k
(1)

where M is the suspended mass, m is the mass of the spring and k is the spring
constant

0.89 = 2π

√√√√1.5 + m
3

k
(2)

1.13 = 2π

√√√√2.5 + m
3

k
(3)

Dividing the two equations and solving for m, we get m = 0.39 kg.

6.29 (a) kA > kB

Let the springs be stretched by the same amount. Then the work done on
the two springs will be

WA = 1
2

kAx2 WB = 1
2

kBx2

WA

WB
= kA

kB

Thus WA > WB, i.e. when two springs are stretched by the same amount,
more work will be done on the stiffer spring.
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(b) Let the two springs be stretched by equal force. Thus the work done

WA = 1
2

kAx2 = 1
2

kA

(
F
kA

)2

= 1
2

F2

kA

WB = 1
2

F2

kB

∴ WA

WB
= kB

kA

Thus when two springs are stretched by the same force, less work will be
done on the stiffer spring.

Fig. 6.19

6.30 Ktrans + Krot + U = C = constant

1
2

mv2 + 1
2

Iω2 + mg(R − r)(1 − cos θ) = C

Now I = 1
2

mr2 ω = v

r

3
4

m
(

dx
dt

)2

+ mg(R − r)
θ2

2
= C

Differentiating with respect to time

3
2

m
d2x
dt2

dx
dt

+ mg(R − r)θ
dθ

dt
= 0

Now x = (R − r)θ

∴ 3
2

d2x
dt2 (R − r)

dθ

dt
+ gx

dθ

dt
= 0

Cancelling
dθ

dt
throughout
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d2x
dt2 + 2

3
gx

(R − r)
= 0

which is the equation for SHM, with

ω2 = 2
3

g
R − r

T = 2π

ω
= 2π

√
3(R − r)

2g

6.3.2 Physical Pendulums

6.31 If α is the angular acceleration, the torque τ is given by

τ = Iα = I
d2φ

dt2 (1)

The restoring torque for an angular displacement φ is

τ = −MgD sin φ (2)

which arises due to the tangential component of the weight. Equating the two
torques for small φ,

I
d2φ

dt2 = −MgD sin φ = −MgD φ

or
d2φ

dt2 + MgD
I

φ = 0 (3)

which is the equation for SHM with

ω2 = MgD
I

(4)

T = 2π

ω
= 2π

√
I

MgD

6.32 Equation for the oscillatory motion is obtained by putting I = 1
3

M L2 and

D = L
2

in (3) of prob. (6.31).
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d2θ

dt2 + MgD
I

θ = 0 (3)

d2θ

dt2 + 3
2

g
L

θ = 0

ω2 = 3
2

g
L

T = 2π

ω
= 2π

√
2L
3g

(4)

For a simple pendulum

T = 2π

√
l
g

(5)

Comparing (4) and (5), the equivalent length of a simple pendulum is l = 2
3

L .

6.33 From the results of prob. (6.31) the time period of a physical pendulum is
given by

T = 2π

√
I

MgD
(1)

where I is the moment of inertia about the pivot A, Fig. 6.9.

Now I = IC + M D2 and IC = Mk2 (2)

where k is the radius of gyration. Formula (1) then becomes

T = 2π

√
k2 + D2

gD
(3)

and the length of the simple equivalent pendulum is D + k2

D
.

If a point B be taken on AG such that AB = D + k2

D
, A and B are known as

the centres of suspension and oscillation, respectively. Here G is the centre of
mass (CM) of the physical pendulum.
Suppose now the body is suspended at B, then the time of oscillation is

obtained by substituting
k2

D
for D in the expression
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2π

√
k2 + D2

gD
and is therefore 2π

√√√√√√√
k2 + k4

D2

g
k2

D

i.e. 2π

√
D2 + k2

gD

Thus the centres of suspension and oscillation are convertible, for if the
body be suspended from either it will make small vibrations in the same
time as a simple pendulum whose length L is the distance between these
centres.

T = 2π

√
L
g

or g = 4π2L
T 2

6.34 ω =
√

mgd
I

(1)

d = 4R
3π

(2)

the distance of the point of suspension from the centre of mass

I = m R2

2
(3)

Substituting (2) and (3) in (1) and simplifying

ω =
√

8g
3π R

6.35 T = 2π

√
I

mgd

T1 = 2π

√
mr2 + mr2

mgr
= 2π

√
2r
g

T2 = 2π

√√√√√
1
2

mr2 + mr2

mgr
= 2π

√
3
2

r
g

∴ T1

T2
=
√

4
3

= 2√
3

6.36 In Fig. 6.20 OA is the reference line or the disc in the equilibrium position. If
the disc is rotated in the horizontal plane so that the reference line occupies
the line OB, the wire would have twisted through an angle θ . The twisted wire
will exert a restoring torque on the disc causing the reference line to move to
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Fig. 6.20

its original position. For small twists the restoring torque will be proportional
to the angular displacement in accordance with Hooke’s law.

τ = −Cθ (1)

where C is known as torsional constant. If I is the moment of inertia of the
disc about its axis, α the angular acceleration, the torque τ is given by

τ = Iα = I
d2θ

dt2 (2)

Comparing (1) and (2)

I
d2θ

dt2 = −Cθ

or
d2θ

dt2 + C
I

θ = 0 (3)

which is the equation for angular SHM with ω2 = C
I

. Time period for small

oscillations is given by

T = 2π

√
I
C

(4)

6.37 Total kinetic energy of the system

K = K (mass) + K (pulley) = 1
2

mẋ2 + 1
2

I θ̇2

Replacing x by rθ and ẋ by r θ̇

K = 1
2

mr2θ̇2 + 1
2

I θ̇2 = 1
2
(mr2 + I )θ̇2
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Potential energy of the spring

U = 1
2

kx2 = 1
2

kr2θ2

Total energy

E = K + U = 1
2
(mr2 + I )θ̇2 + 1

2
kr2θ2 = constant

Differentiating with respect to time

dE
dt

= (mr2 + I )θ̇ · θ̈ + kr2θ · θ̇ = 0

Cancelling θ̇

θ̈ + kr2θ

mr2 + I
= 0

which is the equation for angular SHM with

ω2 = kr2

mr2 + I
. Therefore

ω =
√

kr2

mr2 + I

6.38 Let at any instant the centre of the cylinder be displaced by x towards right.
Then the spring at C is compressed by x while the spring at P is elongated by
2x . If v = ẋ is the velocity of the centre of mass of the cylinder and ω = θ̇ its
angular velocity, the total energy in the displaced position will be

E = 1
2

mẋ2 + 1
2

IC θ̇2 + 1
2

k1x2 + 1
2

k2(2x)2 (1)

Substituting x = rθ , ẋ = r θ̇, and IC = 1
2

mr2, where r is the radius of the

cylinder, (1) becomes

E = 3
4

mr2θ̇2 + 1
2

r2(k1 + 4k2)θ
2 = constant

dE
dt

= 3
2

mr2θ̇ θ̈ + r2(k1 + 4k2)θ θ̇ = 0

∴ θ̈ + 2
3m

(k1 + 4k2)θ = 0
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which is the equation for angular SHM with ω2 = 2
3m

(k1 + 4k2).

T = 2π

ω
= 2π

√
3m

2(k1 + 4k2)

6.39 U (x) = a
x2 − b

x

Equilibrium position is obtained by minimizing the function U (x).

dU
dx

= −2a
x3 + b

x2 = 0

x = x0 = 2a
b

Measuring distances from the equilibrium position and replacing x by x + 2a
b

F = −dU
dx

= 2a
x3 − b

x2

F = 2a
(x + 2a/b)3 − b

(x + 2a/b)2

= 2a
(2a/b)3

(
1 + bx

2a

)−3

− b
(2a/b)2

(
1 + bx

2a

)−2

Since the quantity bx/2a is assumed to be small, use binomial expansion
retaining terms up to linear in x .

F = −b4x
8a3

Acceleration a = F
m

= − b4x
8a3m

= −ω2x

where ω =
√

b4

8a3m

T = 2π

ω
= 4π

√
2ma2

b4
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6.3.3 Coupled Systems of Masses and Springs

6.40 Let spring 1 undergo an extension x1 due to force F . Then x1 = F
k1

. Similarly,

for spring 2, x2 = F
k2

.

The force is the same in each spring, but the total displacement x is the sum
of individual displacements:

x = x1 + x2 = F
k1

+ F
k2

keq = F
x

= F
x1 + x2

= F
F
k1

+ F
k2

= 1
1
k1

+ 1
k2

= k1k2

k1 + k2

∴ T = 2π

√
m
keq

= 2π

√
(k1 + k2)m

k1k2

6.41 The displacement is the same for both the springs and the total force is the
sum of individual forces.

F1 = k1x, F2 = k2x

F = F1 + F2 = (k1 + k2)x

keq = F
x

= k1 + k2

T = 2π

√
m
keq

= 2π

√
m

k1 + k2

6.42 Let the centre of mass be displaced by x . Then the net force

F = −k1x − k2x = −(k1 + k2)x

Acceleration a = F
m

= −(k1 + k2)
x
m

= −ω2x

T = 2π

ω
= 2π

√
m

k1 + k2

6.43 Spring constant of the wire is given by

k′ = Y A
L

(1)
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Since the spring and the wire are in series, the effective spring constant keff is
given by

keff = k′k
k + k

(2)

The time period of oscillations is given by

T = 2π

√
m

keff
(3)

Combining (1), (2) and (3)

T = 2π

√
m(Y A + kL)

Y Ak

6.44 In Fig. 6.15, C is the point of contact around which the masses M and m rotate.
As it is the instantaneous centre of zero velocity, the equation of motion is of
the form /τc = Icθ̈ , where Ic is the moment of inertia of masses M and m
with respect to point C. Now

Ic =
(

1
2

M R2 + M R2
)

+ md2 (1)

where d2 = L2 + R2 − 2RL cos θ . (2)

For small oscillations, sin θ ( θ , cos θ ( 1 and

Ic = 3M R2

2
+ m(L − d)2 (3)

Therefore the equation of motion become

[
3M R2

2
+ m(L − d)2

]
θ̈ = −mgL sin θ = −mgLθ

or θ̈ + mgL
3M R2/2 + m(L − d)2 θ = 0

∴ ω =
√

mgL
3M R2/2 + m(L − d)2 rad/s

6.45 Figure 6.21 shows the semicircular disc tilted through an angle θ compared to

the equilibrium position (b). G is the centre of mass such that a = OG = 4r
3π

,

where r is the radius.
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Fig. 6.21

We use the energy method.

K (max) = 1
2

IAω2

= 1
2
(IG + GA

2
)ω2

= 1
2
[I0 − ma2 + m(r − a)2]ω2 = 1

2

[
1
2

mr2 + mr(r − 2a)

]
ω2

= mr
(

3
4

r − a
)

ω2

Kmax = Umax

mr
(

3
4

r − a
)

ω2 = mga(1 − cos θ)

But a = 4r
3π

ω = 4

√
(1 − cos θ)g
(9π − 16)r

6.46 Referring to Fig. 6.16, take torques about the two hinged points P and Q.

mb2θ̈1 = −mgbθ1 − kb2(θ1 − θ2)

The left side gives the net torque which is the product of moment of inertia
about P and the angular acceleration. The first term on the right side gives
the torque of the force mg, which is force times the perpendicular distance
from the vertical through P. The second term on the right side is the torque
produced by the spring which is k(x1 − x2) times the perpendicular distance
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from P, that is, k(x1 − x2)b or k(θ1 − θ2)b2. The second equation of motion
can be similarly written. Thus, the two equations of motion are

mbθ̈1 + mgθ1 + kb(θ1 − θ2) = 0 (1)

mbθ̈2 + mgθ2 + kb(θ2 − θ1) = 0 (2)

The harmonic solutions are

θ1 = A sin ωt, θ2 = B sin ωt (3)

θ̈1 = −Aω2 sin ωt, θ̈2 = −Bω2 sin ωt (4)

Substituting (3) and (4) in (1) and (2) and simplifying

(mg + kb − mbω2)A − kb B = 0 (5)

− kbA + (mg + kb − mbω2)B = 0 (6)

The frequency equation is obtained by equating to zero the determinant
formed by the coefficients of A and B.

∣∣∣∣

(
mg + kb − mbω2) −kb

−kb
(
mg + kb − mbω2)

∣∣∣∣ = 0

Expanding the determinant and solving for ω we obtain

ω1 =
√

g
b
, ω2 =

√
g
b

+ 2k
m

6.47 In prob. (6.46) equations of motion (1) and (2) can be re-written in terms of
Cartesian coordinates x1 and x2 since x1 = bθ1 and x2 = bθ2.

mẍ1 + mgx1

b
+ k(x1 − x2) = 0 (1)

mẍ2 + mgx2

b
+ k(x2 − x1) = 0 (2)

It is possible to make linear combinations of x1 and x2 such that a combination
involves but a single frequency. These new coordinates X1 and X2, called
normal coordinates, vary harmonically with but a single frequency. No energy
transfer occurs from one normal coordinate to another. They are completely
independent.

x1 = X1 + X2

2
, x2 = X1 − X2

2
(3)
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Substituting (3) in (1) and (2)

m
2

(Ẍ1 + Ẍ2) + mg
2b

(X1 + X2) + k X2 = 0 (4)

m
2

(Ẍ1 − Ẍ2) + mg
2b

(X1 − X2) − k X2 = 0 (5)

Adding (4) and (5)

m Ẍ1 + mg
b

X1 = 0 (6)

which is a linear equation in X1 alone with constant coefficients.
Subtracting (5) from (4), we obtain

m Ẍ2 +
(mg

b
+ 2k

)
X2 = 0 (7)

This is again a linear equation in X2 as the single dependent variable. Since
the coefficients of X1 and X2 are positive, both (6) and (7) are differential

equations of simple harmonic motion having frequencies ω1 =
√

g
b

and

ω2 =
√

g
b

+ 2k
m

. Thus when equations of motion are expressed in normal

coordinates, the equations are linear with constant coefficients and each con-
tains only one dependent variable.
We now calculate the energy in normal coordinates. The potential energy
arises due to the energy stored in the spring and due to the position of the
body.

V = 1
2

k(x1 − x2)
2 + mgb(1 − cos θ1) + mgb(1 − cos θ2) (8)

Now b(1 − cos θ1) = b
θ2

1

2
= x2

1

2b

Similarly b(1 − cos θ2) = x2
2

2b

Hence V = k
2
(x1 − x2)

2 + mgx2
1

2b
+ mgx2

2
2b

(9)

Kinetic energy T = m
2

(
ẋ2

1 + ẋ2
2

)
(10)

Although there is no cross-product term in (10) for the kinetic energy, there
is one in the potential energy of the spring in (9). The presence of the cross-
product term means coupling between the components of the vibrating system.
However, in normal coordinates the cross-product terms are avoided. Using
(3) in (9) and (10)
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V = mg
4b

X2
1 +

(
mg
4b

+ k
2

)
X2

2 (11)

T = m
4

(Ẋ2
1 + Ẋ2

2) (12)

Thus the cross terms have now disappeared. The potential energy V is now
expressed as a sum of squares of normal coordinates multiplied by constant
coefficients and kinetic energy. T is expressed in the form of a sum of squares
of the time derivatives of the normal coordination.
We can now describe the mode of oscillation associated with a given normal
coordinate. Suppose X2 = 0, then 0 = x1 − x2, which implies x1 = x2. The
mode X1 is shown in Fig. 6.22, where the particles oscillate in phase with
frequency ω1 = √

g/b which is identical for a simple pendulum of length b.
Here the spring plays no role because it remains unstretched throughout the
motion.
If we put X1 = 0, then we get x1 = −x2. Here the pendulums are out of
phase. The X2 mode is also illustrated in Fig. 6.22, the associated frequency

being ω2 =
√

g
b

+ 2k
m

. Note that ω2 > ω1, because greater potential energy

is now available due to the spring.

Fig. 6.22

6.48 y = A cos 6π t sin 90π

Now sin C + sin D = 2 sin
1
2
(C + D) cos

1
2
(C − D)

Comparing the two equations we get

C + D
2

= 90π
C − D

2
= 6π

∴ C = 96π and D = 84π

ω1 = 2π f1 = 96π or f1 = 48 Hz

ω2 = 2π f2 = 84π or f2 = 42 Hz

Thus the frequency of the component vibrations are 48 Hz and 42 Hz. The beat
frequency is f1 − f2 = 48 − 42 = 6 beats/s.

6.49 The frequency is given by

f = 1
2π

√
k
µ
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where µ is the reduced mass given by

µ = mHmCl

mH + mCl
= 10. × 36.46

1.0 + 36.46

= 0.9733 amu = 0.9733 × 1.66 × 10−27 kg = 1.6157 × 10−27 kg

f = 1
2π

√
480

1.6157 × 10−27 = 8.68 × 1013 Hz

6.50 Each vibration is plotted as a vector of magnitude which is proportional to the
amplitude of the vibration and in a direction which is determined by the phase
angle. Each phase angle is measured with respect to the x-axis. The vectors are
placed in the head-to-tail fashion and the resultant is obtained by the vector
joining the tail of the first vector with the head of the last vector, Fig. 6.23.

y1 = OA = 1 unit, parallel to x-axis in the positive direction, y2 = AB = 1
2

unit parallel to y-axis and y3 = BC = 1
3

unit parallel to the x-axis in the

negative direction.

Fig. 6.23

The resultant is given by OC both in magnitude and in direction. From the
geometry of the diagram

y = OC =
√

OD2 + DC2 =
√(

2
3

)2

+
(

1
2

)2

= 5/6

α = tan−1(CD/OD) = tan−1
(

1/2
2/3

)
= tan−1(3/4) = 37◦

6.3.4 Damped Vibrations

6.51 The logarithmic decrement ( is given by

( = bT ′ (1)



280 6 Oscillations

where T ′ = 2π

ω′ is the time period for damped vibration and b =
√

ω2
0 − ω′ 2,

where ω0 and ω′ are the angular frequencies for natural and damped vibra-
tions, respectively.

( = 2π

√
ω2

0

ω′ 2 − 1 = 2π

√
f 2

f ′ 2 − 1 = 2π

√(
20
16

)2

− 1 = 3π

2

6.52 The equation for damped oscillations is 4
d2x
dt2 + rdx

dt
+ 32x = 0

Dividing the equation by 4

d2x
dt2 + r

4
dx
dt

+ 8x = 0

Comparing the equation with the standard equation

d2x
dt2 + r

m
dx
dt

+ k
m

x = 0

m = 4,
k
m

= 8 → k = 32

ω0 =
√

k
m

=
√

8 = 2
√

2

The quantity b = r
2m

represents the decay rate of oscillation where r is the

resistance constant.

(a) The motion will be underdamped if

b < ω0 or
r

2m
<

√
k
m

or r < 2
√

km

i.e. r < 2
√

32 × 4 or r < 16
√

2

(b) The motion is overdamped if r > 16
√

2.
(c) The motion is critically damped if r = 16

√
2.

6.53 (a) ω0 =
√

k
m

=
√

20
4

= 2.23 rad/s

T = 2π

ω0
= 2π

2.23
= 2.8 s
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(b) ω′ = 2π

T ′ = 2π

10
= 0.628 rad/s

b =
√

ω2
0 − ω

′2 =
√

2.2362 − 0.6282 = 2.146
r

2m
= b or r = 2mb = 2 × 4 × 2.146 = 17.17 Ns/m

(c) ( = bT ′ = 2.146 × 10 = 21.46

6.54
d2x
dt2 + 2dx

dt
+ 5x = 0

Let x = eλt . The characteristic equation then becomes λ2 + 2λ + 5 = 0 with
the roots λ = −1 ± 2i

x = Ae−(1−2i)t + Be−(1+2i)t

or x = e−t [C cos 2t + D sin 2t]

where A, B, C and D are constants.

C and D can be determined from initial conditions. At t = 0, x = 5. Therefore
C = 5.

Also
dx
dt

= −e−t (C cos 2t + D sin 2t) + e−t (−2C sin 2t + 2D cos 2t)

At t = 0,
dx
dt

= −3

∴ −3 = −C + 2D = −5 + 2D

∴ D = 1

The complete solution is

x = e−t (5 cos 2t + sin 2t)

6.55 F = mg = kx

k = mg
x

= (1.0)(9.8)

0.2
= 49 N/m

Equation of motion is

m
d2x
dt2 + r

dx
dt

+ kx = 0 (1)
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Substituting m = 1.0, r = 14, k = 49, (1) becomes

d2x
dt2 + 14

dx
dt

+ 49x = 0 (2)

ω0 =
√

k
m

=
√

49
1

= 7 rad/s

b = r
2m

= 14
2 × 1

= 7

(a) Therefore the motion is critically damped.
(b) For critically damped motion, the equation is

x = x0e−bt (1 + bt) (3)

With b = 7 and x0 = 1.5, (3) becomes

x = 1.5 e−7t (1 + 7t)

6.56 ω0 =
√

k
m

=
√

150
60

= 5

Damping force fr = r · v

or r = fr

v
= 80

2
= 40

b = r
2m

= 40
2 × 6

= 3.33 rad/s

ω(res) =
√

ω2
0 − 2b2 =

√
52 − 2 × (3.33)2 = 1.66 rad/s

f (res) = ω(res)
2π

= 0.265 vib/s

6.57 Equation of motion is

2d2x
dt2 + 1.5

dx
dt

+ 40x = 12 cos 4t

Dividing throughout by 2

d2x
dt2 + 0.75

dx
dt

+ 20x = 6 cos 4t
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Comparing this with the standard equation

d2x
dt2 + 2b

dx
dt

+ ω2
0x = p cos ωt

b = 0.375; ω0 =
√

20, p = 6, ω = 4

ZM =
√(

ω2
0 − ω2

)2 + 4b2ω2 =
√

(20 − 16)2 + 4 × 0.3752 × 42 = 5

(a) A = p
Zm

= 6
5

= 1.2

(b) tan ε = 2bω

ω2
0 − ω2

= 2 × 0.375 × 4
(20 − 16)

= 0.75 → ε = 37◦

(c) Q = ω0m
r

= ω0

2b
=

√
20

2 × 0.375
= 5.96

(d) F = pm = 6 × 2 = 12

W = F2

2Zm
sin ε = 122

2 × 5
sin 37◦ = 8.64 W

6.58 Q = 2π tc
T

= 2π tc f = 2π × 2 × 100 = 1256

6.59 (a) Energy is proportional to the square of amplitude

E = const.A2

dE
E

= 2dA
A

= 2 × 5
100

= 10%

(b) E = E0e−t/tc

∴ E
E0

= A2

A2
0

= e−t/tc

∴ A
A0

= 95
100

= e−t/2tc

t
2tc

= ln
(

100
95

)
= 0.05126

tc = 3
2 × 0.05126

= 29.26 s

(c) Q = 2π tc
T

= (2π)(29.26)

3.0
= 61.25
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6.60 (a) E = E0e−t/tc

∴ t
tc

= ln
(

E0

E

)
= ln 2 = 0.693

Put t = nT

∴ n = 0.693
tc
T

But − (E
E

= 3
100

= T
tc

∴ n = 0.693 × 100
3

= 23.1

(b) Q = 2π tc
T

= 2π × 100
3

= 209.3

6.61 ω′ = ω0

√

1 − 1
4Q2 = 9ω0

10

∴ Q = 1.147

Q = 2π tc
T

or
T
2tc

= π

Q
= 3.14

1.147
= 2.737

A
A0

= e−T/2tc = e−2.737 = 0.065

6.62 ω′2 = ω2
0 − b2 (1)

where b = r
2m

(2)

ω′ = ω0

(

1 − b2

ω2
0

)1/2

≈ ω0

(

1 − b2

2ω2
0

)

(3)

where we have expanded the radical binomially, assuming that b/ω0 << 1.

Now ω2
0 = k

m
(4)

∴ b2

2ω2
0

= r2

8mk
(5)

Substituting (5) in (3)

ω′ = ω0

(
1 − r2

8mk

)
(for small damping)
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6.63 The time elapsed between successive maximum displacements of a damped
harmonic oscillator is represented by T ′, the period.

T ′ = 2π

ω′ = 2π
√

ω2
0 − b2

= 2π
√

k
m

− r2

4m2

= 4πm√
4km − r2

= constant

6.64 Force = mg = kx

∴ k
m

= g
x

= 980
9.8

= 100

ω0 =
√

k
m

=
√

100 = 10 rad/s

( = bT ′ = 2πb
√

ω2
0 − b2

(1)

Substituting ( = 3.1 and ω0 = 10 in (1), b = 4.428

T ′ = 2π
√

ω2
0 − b2

= 2π
√

102 − (4.428)2
= 0.7 s

6.65 d2x
dt2 + 2dx

dt
+ 8x = 16 cos 2t (1)

This is the equation for the forced oscillations, the standard equation being

m
d2x
dt2 + r

dx
dt

+ kx = F cos ωt (2)

Comparing (1) and (2) we find

m = 1 kg, r = 2, k = 8, F = 16 N , ω = 2

(a) ω0 = 2π f0 =
√

k
m

=
√

8
1

= 2
√

2

∴ f0 = 2
√

2
2π

=
√

2
π

/s

(b) ω = 2π f = 2

∴ f = 2
2π

= 1
π

/s
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6.66 E(t) = E0e−t/tc

∴ E(t1/2)

E0
= 1

2
= e−t1/2/tc

or t1/2 = tc ln 2

6.67 A(t) = A0e−t/2tc

A(t)
A0

= 1
e

If t = 2tc = 8T

∴ tc = 4T

Q = 2π
tc
T

= 2π × 4 = 25.1
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